Computational Study of Quinolone Derivatives to Improve their Therapeutic Index as Anti-malaria Agents: QSAR and QSTR
نویسندگان
چکیده
Malaria is a parasitic disease caused by five different species of Plasmodium. More than 40% of the world's population is at risk and malaria annual incidence is estimated to be more than two hundred million, malaria is one of the most important public health problems especially in children of the poorest parts of the world, annual mortality is about 1 million. The epidemiological status of the disease justifies to search for control measures, new therapeutic options and development of an effective vaccine. Chemotherapy options in malaria are limited, moreover, drug resistant rate is high. In spite of global efforts to develop an effective vaccine yet there is no vaccine available. In the current study, a series of quinolone derivatives were subjected to quantitative structure activity relationship (QSAR) and quantitative structure toxicity relationship (QSTR) analyses to identify the ideal physicochemical characteristics of potential anti-malaria activity and less cytotoxicity. Quinolone with desirable properties was built using HyperChem program, and conformational studies were performed through the semi-empirical method followed by the PM3 force field. Multi linear regression (MLR) was used as a chemo metric tool for quantitative structure activity relationship modeling and the developed models were shown to be statistically significant according to the validation parameters. The obtained QSAR model reveals that the descriptors PJI2, Mv, PCR, nBM, and VAR mainly affect the anti-malaria activity and descriptors MSD, MAXDP, and X1sol affect the cytotoxicity of the series of ligands.
منابع مشابه
Computational Study of Quinolone Derivatives to Improve their Therapeutic Index as Anti-malaria Agents: QSAR and QSTR
Malaria is a parasitic disease with limited chemotherapy options. Chemotherapy options are limited; moreover, drug resistant frequently occurs. The speed of drug development should be faster to overcome the emerging drug resistance. In the current study, a series of quinolone derivatives were subjected to quantitative structure activity relationship to identify the ideal physicochemical charact...
متن کاملComputational Study of Quinolone Derivatives to Improve their Therapeutic Index as Anti-malaria Agents: QSAR and QSTR
Malaria is a parasitic disease with limited chemotherapy options. Chemotherapy options are limited; moreover, drug resistant frequently occurs. The speed of drug development should be faster to overcome the emerging drug resistance. In the current study, a series of quinolone derivatives were subjected to quantitative structure activity relationship to identify the ideal physicochemical charact...
متن کاملSynthesis and Antimicrobial Activity of some Tetrahydro Quinolone Diones and Pyrano[2,3-d]pyrimidine Derivatives
There has been special interest in the chemistry of quinolone and pyrimidine derivatives due to their diverse biological activities such as anticonvulsant, anti-malarial agents, antibacterial, antiviral, cytostatic, antithelemintic, antigenotoxic, anti-cancer agents. These compounds are also used as targeting delayed-type hypersensivity and anti-convulsant agents. As a part of our research work...
متن کاملSynthesis and Antimicrobial Activity of some Tetrahydro Quinolone Diones and Pyrano[2,3-d]pyrimidine Derivatives
There has been special interest in the chemistry of quinolone and pyrimidine derivatives due to their diverse biological activities such as anticonvulsant, anti-malarial agents, antibacterial, antiviral, cytostatic, antithelemintic, antigenotoxic, anti-cancer agents. These compounds are also used as targeting delayed-type hypersensivity and anti-convulsant agents. As a part of our research work...
متن کاملMolecular Docking and QSAR Study of 2-Benzoxazolinone, Quinazoline and Diazocoumarin Derivatives as Anti-HIV-1 Agents
A series of 2-benzoxazolinone, diazocoumarin and quinazoline derivatives have been shown to inhibit HIV replication in cell culture. To understand the pharmacophore properties of selected molecules and design new anti-HIV agents, quantitative structure–activity relationship (QSAR) study was developed using a descriptor selection approach based on the stepwise method. Multiple linear regression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2015